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Kelvin-wave diffraction by changes in depth 
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(Received 14 July 1972) 

The diffraction of a Kelvin wave by a transverse (to a straight coastline) dis- 
continuity in depth is considered. A Fourier-integral formulation leads to a 
singular integral equation that may be solved exactly; however, the integrals 
in this solution are intractable without further approximation. An expansion to 
third order in a depth-change parameter yields results that are generally adequate 
for tidal problems (such as that posed by the Mendocino fracture zone) but are 
inadequate for the double-Kelvin-wave regime. Approximations are developed 
for a continuous change of depth that is either small or gradual, and the diffracted 
Kelvin wave along the coastline is found to have an amplitude that is inversely 
proportional to the square root of the depth and a phase that is given by the 
integral of the wavenumber. 

1. Introduction 
The following investigation of Kelvin-wave diffraction by a change in depth 

(in the direction of propagation) forms part of a broader study of coastal propaga- 
tion of the tides and complements an earlier study (Miles 1972) in which the 
effects on a Kelvin wave of the Earth’s curvature, the reduction in depth over 
the continental shelf, and distortion of the (otherwise straight) boundary were 
considered. It is aimed especially at  the Mendocino fracture zone, where the 
change is sufficiently abrupt (at tidal wavelengths) to be modelled by a dis- 
continuity in a semi-infinite ocean bounded by a vertical wall (see figure 1).  
We consider this model first and then go on to consider the more general case 
of continuously varying depth, subject to the restriction that the total change is 
either small or gradual (slowly varying). The problem of small, but otherwise 
arbitrary, changes in depth along a coastline has been considered previously 
by Pinsent (1972); however, both his analysis and his results contain errors (see 
§ 5 below). 

Let C(x,y) be a complex amplitude of a harmonic disturbance, such that the 
instantaneous vertical displacement of the free surface is given by 

(1 .1)  @, Y, t )  = 9(C(z, Y) e q ,  

where $2 implies the real part of and 
amplitude of the incident Kelvin wave is 

is the angular frequency. The complex 

C = A ,  e-ax+iku, (1.2) 

where 
26 
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if is the vertical component of the angular velocity of the Earth, positive in 
the sense of figure 1, and h is the depth outside the continental shelf (we append 
the subscripts 5 to h and h-dependent parameters if and as required to avoid 
ambiguity). The transmitted Kelvin wave is described by a similar expression, 
with A, replaced by A_, and we seek the complex transmission coefficient 

T = AJA,  
as a function of the parameters 

E = (h, - h-)/(h, + h-1, (1.5) 

1 = f h  (1.6) 

which measures the total change in depth, and 

which measures the wave period in half' pendulum-days. 
For analytical convenience, we assume that 

a r g r = - &  ( 0 < 6 < 1 ) .  (1.7) 

The assumption that BCT > 0 imposes no essential restriction on the results. 
The assumption that ~ C T  < 0 stems from a consideration of the corresponding 
initial-value problem and is tantamount to a radiation condition in the limit 
S 4 0;  this limit is implicit (8 = 0 + ) in the ultimate interpretation of the results, 
and a statement such as 1 > 1 implies B?! > 1 in those stages of the development 
in which 6 > 0. The extension of the results to f < 0 is straightforward and re- 
quires only appropriate changes of sign, including those in the exponent of (1.2). 

Additional (to the incident and diffracted Kelvin waves) disturbances are 
excited by the discontinuity and are necessary to satisfy the boundary con- 
ditions; however, these disturbances radiate energy away from the coastline 
only for certain ranges of E and 1. Poincare waves of asymptotic form (as r -f co) 

cp -P(B)r-itexp{-i(lCz-a2)+r) ( r+co) (1.8) 

(1.9) 

are radiated if 1 < 1. A double Kelvin wave of the form (Longuet-Higgins 1968) 

6 = D exp { - imx - (m2 + a2 - k2)+ I y 1) (x -+ co), 

where m is the positive real root of 

h+(m2+a2, -q)*+h-(m2+a2_ -kZ)B-[(h,-h-)m = 0, (1.10) 

is propagated along the discontinuity if and only if €1 > 1. The parametric 
regimes implied by these considerations are: (i) 0 < 1 < 1, Kelvin and Poincad 
waves; (ii) - 1 < E < 111 < 1, Kelvin waves; (iii) I/! < E < 1, Kelvin and double 
Kelvin waves. The regime of principal interest for tidal problems is roughly 
161 < 4 and 1 < 2, so that double Kelvin waves are only of peripheral interest in 
the present context. [The double Kelvin wave excited in an infinite ocean with 
a semi-infinite barrier along a plane discontinuity in depth has been calculated 
by Pinsent (1971).] 

The fact that no energy can be radiated away from the coastline for 

- 1  < E < 111 < 1 
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implies that the amplitude of the diffracted Kelvin wave must be inversely 
proportional to the square root of the depth (the energy flux for a Kelvin wave 
is proportional to cA2/u = ghA2/g, where c is the wave speed and l /u is the trans- 
verse scale of the trapped wave); accordingly 

IT1 = (h+/h-)+ = {(1+€)/(1-~)}4 To ( - 1  < E < l/& < 1). (1.11)  

Moreover, the energy radiated by Poincar6 waves is of O(e2), so that (1.11) also 
holds to O ( E )  for I E I  < 1 and & < 1. In  fact, the results in $ 4  below imply that 
(1.11) provides an excellent approximation throughout the tidal regime; e.g. 
I TIT,] = 1.002 for the semi-diurnal tide at  the Mendocino fracture zone. 

Energy arguments are inadequate for an estimate of the phase of T ;  however, 
heuristic arguments suggested by Green’s approximation for one-dimensional 
gravity waves in shallow water of slowly varying depth (Lamb 1932, $185) 
suggest that this change must be of O(s2). This is borne out by the results in 9 4 
below, which yield argT < 0.8$ for & < 2. Taken together, these arguments 
suggest that a first-order (in E )  approximation should be adequate, and that 

(1.12) 

should provide a good approximation, for a Kelvin wave moving through water 
of continuously varying depth. This conjecture is supported by analysis in $ 5  
below, where it is shown to be valid within 1 + O(e2) as ]el --f 0 c.r, alternatively, 
as an asymptotic approximation, similar to  that of Green, for slowly varying 
depth (scattering is negligible in the latter approximation). 

2. The boundary-value problem 
Let c, u and v denote the complex amplitudes cf the vertical displacement of 

the free surface and of the x and y components of the particle velocity in the 
rotating reference frame of figure I. The equations of motion for small dis- 
turbances in shallow water of uniform depth h then imply (Lamb 1932, $207) 

{u, v} = ( iS l4  (1  - &”-’ {Q - iK,, c, + iC5,) (2.1) 

and L + C , y + K 2 Y  = 0 (Y 4 01, (2.2) 

where 
They also imply 

K~ = (g2 -f2)/(gh) = k2 - u2. 

fY+h(~,-V,) = 0, 

which describes (for small disturbances) the conservation of vorticity in a column 
of depth h + 5 and infinitesimal cross-section. [The term - i&(h,u + h,v) must be 
added to the left-hand side of (2.4) if h = h(x, y).] 

The differential equation (2.2) is not valid at  y = 0, where it must be replaced 
by the requirements that pressure and transverse mass flux be continuous across 
the discontinuity in h; 

[51 = 0, [hvl = 0, (2.5a, b )  

where I I = [ Iy=o+- [ ly=o--. 
26-2 
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FIGURE 1. Discontinuity in depth along y = 0 in a semi-infinite 
ocean bounded by x = 0. 

Combining (2.4) and (2.5a, b) ,  we obtain the alternative jump condition 

Ihu,] = 0 (y = O ) ,  ( 2 . 5 ~ )  

We require the solution of (2 .2)  and (2.5) subject to the boundary conditions 

u = o  (2"=0), [ + O  ( X - t c o ) ,  (2.6a, b )  

and [ A ,  e-ax+iky (y -+ a, ax = O(l)) ,  ( 2 . 6 ~ )  

where the last term represents the incident Kelvin wave of (1.2). The invocation 
of radiation conditions is unnecessary by virtue of (1.7). 

which proves more convenient than (2.5b) in the subsequent formulation. 

3. Fourier-integral formulation 

form 
The most general solution of (2.2) that satisfies (2.6a, b,  c )  may be posed in the 

where /.L = ( a 2 - K 2 ) 4  (L%p > O ) ,  (3.2) 

the subscripts 5 are implicit on the h-dependent parameters a, k, K and p for 
y 0,  and the path of integration (that part of Co in Ba > 0 in figure 2) is 
indented over the branch points at  a = K* in the limit 84 0. Substituting (3.1) 
into (2.1) yields 

whence 
f m  

is the Fourier-sine transform of the dimensionless velocity u on y = 0 f . 

(2.5c),  we obtain 
It remains to satisfy the jump conditions at y = 0. Substituting (3.3) into 

(3.5) h+p+U+ = -h-p-U- = -iA,a@(a),  
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- K - .  X ici- 
I 
X in+ -K+ 

- K -  - K +  

R+ K -  

- ia+ 'I' 
-ia- X 

< 2  
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co 
n ,  
X 
rn 

K+ 

K -  

where (since U, is an odd function of a) 0 is an even function of a. Substituting 
U, from (3.5) into (3.1) and invoking (2.5a) and (1.4), we obtain 

(2/r)Im@(a) {$(a) cosax+ ;.&(a) sin ax)da = T e-a- 5- e-a+ 5 9 (3.6) 
0 

where &(a) = a2[{h+(a2+a2,),u+}-1+{h-(~2+a2_)p-}-1] ( 3 . 7 ~ ~ )  

and $(a) =-!a[ - {h+(a2 +a",}-' + {h-(a2 +a:)}-'] (3.7b) 

are the even and odd parts of 

F(a)  = &(a) +C(a) (3.8a) 

(3.8b) 

Taking the Fourier-cosine transform of (3.51, we obtain [the transform of the 
integral involving sin ax may be calculated by replacing a by s in the integrand, 
multiplying through by exp ( - cx) cos ax, integrating from a = C to a = co, 
letting c J. 0, and invoking symmetry considerations to reduce the integral to that 

- (1 - 1') a2{h+p+ + h-p- + 1(h+ - h-) a} 
h+h-,u+P-(a +&+I (a - !P-) 

- 

displayed in (3.9)] 

(3.9) 
$(s)  O(s)ds - Ta-  a+ 

$+a2 a2+a2,' 

where the crossed integral sign implies the Ciauchy principal value of the integral.? 
Letting a --f 0 in (3.9) and invoking (3.7a) and the condition 

a20(a) -+ 0 (a + O ) ,  (3.10) 

f The Fourier-sine transform of (3.6) is equivalent to the Hilbcrt transform of (3.9). 
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which is necessary 
we obtain 

where 

J .  W.  Miles 

for the evanesceiice of the Fourier integral (3.4) as x -+ 00, 

m 

T = 7; + (iaJr){ s-l&(s) @(s) ds, 

To = .-/a+ = (h+/h-)+ 

- W  

(3.11) 

(3.12) 

is the transmission coefficient defined by (1.11). Substituting (3.11) into (3.9), 
combining the two integrals, invoking symmetry considerations to simplify the 
resulting integral, and multiplying the result through by (a? + a2)/a2,  we obtain 

m 

G&a) @(a)  + (i/n)-/ (s - a)-l Go(s) @(s) ds = E(a),  (3.13) 
- W  

where Gc(a) and Go(a) are the even and odd parts of 

G ( a )  = (a2 +a!!) F(a)  ( 3.14 a)  

(3.14b) 

and E(a)  = {(a"-a+)-a+} (a2+a2,)-1 (3.15 a)  
= 2 4 1  -€)-1a+(a2+a2,)-? (3.15b) 

We remark that G(a) has a simple zero at  a = T m & i 0  + (6 = 0 + ) on the real 
axis if and only if -t €1 > 1; m is given by (1.10). 

The solution of (3.13) may be reduced to quadrature (see appendix), but it does 
riot appear possible to obtain tractable results without further approximation. 

4. Approximate solution 
I f  E -g 1 and /' = O( l), as is true €or most tidal problems but mot for the double- 

Kelvin-wave regime ( ( ~ $ 1  > l),  the solution of (3.13) may be obtained by ex- 
panding G and @ in powers of E. Introducing 

h, = h1( 1 & E),  h, = &(h+ + h-), B = (h+-h-)/(h++h-), (4 . la ,  b,c) 

in (3.8) and (3.13)-(3.15), we obtain 

P(a) = 2a2(a2+a:+Efap1) (h,p1)-l(a2+n2,)-2{1 + 0 ( € 2 ) ) ,  (4.2) 

where a, and p1 are based on h,. 
Substituting (4.2) and (4.3) into (3.11), we obtain 

T 
- =  
'r, 

(4.4) 

in which the double integral vanishes identically. Evaluating the first integral, 
we obtain 

(4.5) (T/T,I = i - g ( i  - p ) 2 ~ ( i  -&) + 0 ( € 4 )  
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P 
FIGURE 3. The phase of the Kelvin-wave transmission coefficient for 

a discontinuity in depth, as given by (4 .6a) .  

and argT = &(~~/n-){!(l+!~)--&(l-&~)~ln I(I+!)/(1-&)I}+O(e4) (4.6a) 

= 4(3n)-1~2~3{1- +p+ 0 y 4 ) )  ( I  J. 0) .  (4.6b) 

The result IT\ = To is exact for 1 < ! < 1 / ~ ;  however, our approximations are 
valid only for €1 << 1. The result (4.6a) is plotted in figure 3. Considering, for 
example, the Mendocino fracture zone (40"N), for which = 6 (h,  + 4km, 
h- + 3km), we obtain To = 1.15, ]T/ToI = I and 1.0017, and arg T = 0.096 and 
0.0022 for the diurnal (K,) and semidiurnal (M,) tides. The corresponding time 
advances are 22min and 15s) which compare with a time delay of 1.3h for 
either component in consequence of the corner at  Cape Mendocino (Miles 1972). 

Turning to the calculation of the non-Kelvin-wave field, we rest content with 
a first-order (in E )  approximation. Higher approximations are qualitatively 
similar if Is!] < 1, but are complicated by the distinction between the two sets 
(h  = h,) of singularities. Substituting the first approximation to 0 from (4.3) 
into (3.3), dropping the subscripts (since the parameters for y > 0 and y < 0 are 
equal in this first approximation) and setting A+ = 1, we obtain 

a(a2 + a2)-1 e-plvi sin ax da u = - (2isa/n-) sgn y (4.7a) 

(4.7b) 
m 
sum 

= - (Ea/n) sgn y/ a(a2 + a2)-1 eiaz-pivl da, 

where, here and subsequently, the error is O(e2).  Letting ly] --f 0,  we obtain 

- W  

u = -iisae-azsgny (x > 0 ,  ( y J  --f 0 ) )  (4.8) 

which describes the discontinuity in tangential velocity at the discontinuity 
in depth. The integrals in (4.7a, b)  do not converge uniformly near x = y = 0,  in 
consequence of which (4.8) satisfies (2.6a) only if averaged overy = 0 & . 
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ce<1, (!>I, 

FIGURE 4. The complex-5 plane, showing the disposition of the various branch points (a), 
poles ( x ), and saddle points (O), the original paths of integration (Co), and the paths of 
steepest descent (C,) for 6 = 0 + . 

We obtain an asymptotic approximation to u by the method of steepest descent 
(cf. Voit 1958). Considering first 8 < 1,  we introduce the transformations 

a = Ksinc, p = ~ K C O S ~  ( 6 =  ( + i ~ )  (4.9) 

and x = rcosB, y = rsin8 
in (7.4b) t o  obtain 

(4.10) 

where the path of integration C,, is sketched in figure 4. The exponent in the 
iiitegrand has a saddle point at  < = - in + 101, and the path of steepest descent 
through that saddle point for I <: 1, say C,, is given by 

sin([-IBl)coshy=-l ( & <  1 , 6 = 0 + ) ,  (4.12) 

as sketched in figure 4. Deforming C,, to C,, we find that the pole at a = ia is 
crossed if and only if 161 < cos-l$ (the pole at a = -ia is not crossed for any 
value of 0). Carrying out a saddle-point approximation to the integral over C,, 
we obtain 

u - ea[-i(sgny)H(cos-l&- I O l ) e - ~ ~ - i ” ~ l + ( ~  -tz) ( ~ n ~ y ) - J e - i ( K r - & n )  2 

x ( ~ o s ~ ~ + ~ ~ s i n ~ B ) - ~ s i n B c o s B ]  ( ~ r + 0 3 ,  8 < I ) ,  (4.13) 

where H is Heaviside’s step function. The asymptotic approximation is co- 
incidentally exact at  Iy( = ( B (  = 0, where (4.13) reduces to (4.8); on the other 
hand, it is not uniformly valid near B = cos-’{. 

If 1 > 1, K must be replaced by - i l ~ J  (since a rg i  = O +  for 6 = 0 + )  in (4.9) 
and (4.1 I), C,, transforms to 6 = 0, and C, is given by 6 = - in + 18). The pole at  
a = ia then is not crossed in the deformation from C,, to C, if (81 > 0, and (4.13) 
is replaced by 

u - -iea(&2- I)  (47~1~1 r)-+e-lKlp 

x (cos2B+&2sin2B)-lsinBcos8 

The approximation is not uniformly valid near 181 = 0. 

( ( K (  r +  03, (81 > 0, I > 1). (4.14) 



Kelvin-wave diffraction by changes in depth 409 

The asymptotic calculation of the non-Kelvin-wave displacement iield, say 
c*, differs qualitatively from the preceding calculation only in that the integrand 
in (3.1) has a double pole at a = ia if y < 0. The end results are 

(t ’ 1)  (4.15 b )  
-E&?- 1)Qe-iKlrsin8cos6 

( Qn I K I r )S (cos 8 - it sin 8)  ( cos2 8 + t2 sin2 0) 
N 

as -+ 00 with x > 0, and 

5. Continuous variation of depth 
We now suppose that 

h = hop +a!/)), ( 5 . 1 ~ )  

where A(0) = 0, A(y) = o(e-”l”lf”) (y --f 00). (5 . lb ,c)  

The restriction (5.1 c) is typically satisfied by A = 0 in y 2 0 after an appropriate 
choice of origin; however, it is useful to have results for the weaker restriction 
that (for S = 0 + ) A must vanish smoothly as y --f 00. The parameter c is similar 
t o  that defined by (1.5), but may be regarded as positive. 

The equations of motion for continuously varying h yield 

(1+cA) (5,,+5y,)+sa’(~,++;e~,-,,+K02~ = 0 (5 .2 )  

in place of (2.2), where the prime implies differentiation with respect to y, and 
the subscript zero implies h = h,. We seek that solution of (5 .2 )  and the boundary 
conditions (2.6a, b )  which reduces to 

for E = 0. 
co( x, y ) = e-ao z+% 1/ (5.3) 

Considering first a perturbation approximation, we substitute 

(a: + 8; 4- K t  ) = - A( + a t )  c o  - A’( a, f ‘$a,) co (5.5a) 

= - i( 1 - t 2 )  ko(A‘ + ik, A )  ( 5 . 5 b )  

and (az-i&/) c1 = 0 (x = 0) )  el --f 0O (x --f a). ( 5 . 6 ~ ~ )  b )  

Extending the expansion to would yield (5.5a) and (5.6a, b ) ,  but not ( 5 . 5 b ) ,  
with and co replaced by and t!&-l. 
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Solving (5 .5b )  and (5.6u, b )  through Fourier transformation with respect to y 
and dropping the subscript zero on a and k (which we may do without ambiguity 
in the calculation of el), we obtain 

v = (P2 -KZ)Q ( 9 v  2 O ) ,  (5.9) 

and the path of integration is along the real axis of the complex-P plane if 6 > 0. 
The complete integrand has a simple pole at  P = K but is regular at  /? = - k. 

The integrals in (5.7) and (5.8) may be transformed in various ways. We con- 
sider first the important special case x = 0. Deforming the path of integration 
for 3 into $/I 0 for y - 7 5 0 ,  and separating out the contribution of the pole 

where Cl, passes counterclockwise/clockwise around the vertical branch cut 
fromp = T K t o p  = T K f ico. Substituting (5.10) into (5.7), invoking the identity 

(1 -&2 ) / ( v - tP )  = (v+&P)/(P2-k2), 

integratin.g the term in ikR(7)  by parts, invoking (5.1c), and introducing the 
change of variable /3 = 3 K & it along C,, we obtain 

(5.11) 

( 5 . 1 2 ~ )  

J - m  

Substituting (5.11) into (5.4), restoring the subscript zero on k ,  and observing 

(5.13) 1 - &A(y) = {h(y)/h,}-i = k ( y ) / k ,  
that 

to first order in B, we obtain 

e m  Y) = {h(Y )/h,}-$ exp [ i /,"I; dY - i IOrn ( k  - k,) dY] + €el* (Y) + W). (5.14) 

The dominant term in (5.14) represents the Kelvin wave and is equivalent to 
the approximation obtained by invoking T = T, in the calculation of the dif- 
fracted Kelvin wave in § $ 3  and 4. The corresponding approximation derived 
by Pinsent (1972, equation (3.11)) implies the diffracted Kelvin wave 

(5.15 



- K  j 
41 1 

@ 

C ,  

X 

f x- > 

in the present notation. This result is valid if and only if the change of depth 
is confined to a region that has been completely traversed (by the Kelvin wave) 
at the point of observation, in which case the Kelvin-wave component of (5.14) 
reduces to (5.15). 

We transform the Fourier integral of (5.7) and (5.8) to one that is more closely 
related to the integrals in §§3 and 4 by: (i) integrating the term in ikR(7) by 
parts, which has the effect of replacing A’ + ikR by R’ in (3.7) and introducing an 
additional factor of /3/(B- k) in (5.8); (ii) deforming the path of integration into 
9/3 < 0 for y - 7 2 0; (iii) separating out the contribution of the double pole at 
/3 = k; (iv) introducing the change of variable 

p = fi(a!Z-K2)4 = k i p  (y50) (5.16) 

along a path around the cut from p = T K to ,!3 = -C 00 in the plane (C, in figure 5 ) ,  
which maps on the real axis of the a! plane (Go in figure 2, with K+ = K-  = K 

therein); the end result is 

where 

(5.18) 

Substituting (5.17) into (5.41, restoring the subscript zero on a and k, and 
invoking (5.13) and the corresponding result for a@), we obtain 
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The dominant term in (5.19) may again be identified as the diffracted Kelvin 
wave; however, this identification is unambiguous only on x = 0, since Cl* 
contains a Kelvin-wave-like component in x > 0, as exemplified by the first 
term on the right-hand side of ( 4 . 1 5 ~ ~ ) .  An asymptotic approximation to the 
scattered wave defined by (5.18) may be obtained by invoking the transforma- 
tions (4.9) and (4.10) and the method of steepest descent. The results reduce to 
(4.15) and (4.16) for the depth profile (4.1)) which implies h, = h+ and 

in the notation of (5,l). 

h(y)  is slowly varying (Ih’l < kh). Posing the solution in the form 

4 Y )  = - 2 a  -Y) 

An alternative approach to the solution of (5.2) and ( 2 . 6 ~ ~ )  b)  is to assume that 

5(X,Y)  = A(x,?/)exp - 4 y ) x + i  (5.20) 

expanding A in powers of x, and letting Ic -+ 00 with kx = O( 1)) we obtain the 
asymptotic solution (cf. Miles 1972, $3)  

P a y ) ,  

A = constant x {k(y) + i&xk’(y) - $ix2Ic(y) k’(y) + O(l/Ic)). (5.21) 

Substituting (5.21) into (5.20) and setting x = 0, we place the result in the form 

5(0,Y) A,(LIh,)-E-exP(i~~ledy), (5.22) 

which is equivalent to the Kelvin wave in (5.14)) but is subject t o  the restriction 
Ih’l Q kh rather than e < 1. 

This work was partially supported by the National Science Foundation under 
Grant GA-10324 and by the Office of Naval Research under Contract Nonr- 
00014-69-A-0200-6005. 

Appendix. Solution of singular integral equation 
The singular integral equation (3.13) is of a type considered byMuskhelishvili 

(1953,s 108), in whose notation Ge = A ,  Go = B, E = g and @ = 4. The character 
of the solution depends essentially on the parameter (a = a in Muskhelishvili’s 
notation) 

LZ = _+ (277)-l arg {G( T oo)/G( k oo)), (A 1 4  

The solution for I$\ < 1 is straightforward (the end-points kco are ‘special‘) 
and is iriven bv 

,2 

1 S - m  Z(s)K,(s)ds 
@(a) = &(a) +- znZ(a) - -m s-a ) 
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where K,(a) and KJa) are the even and odd parts of 

K(a)  = E(a)/G( -4, (A 3a) 

and Z(a) = {G(a) G( -a)}* exp 

The result is independent of the choice of the square root in (A 4) provided that 
the same branch is used consistently. The integrals appear to be intractable 
without further approximation, such as an expansion about e = 0 (with first 
and second approximations equivalent to those given in $4). 

> 1 is complicated by the zeros of G(a)  G( - a) at a = T m 
(which tend to the real axis from above/below as 8 JO), and eigensolutions must 
be added to the right-hand side of (A 2) in order to guarantee the appropriate 
behaviour of @(a) as a -+ co. The end result is that the asymptotic (x .+ co) 
solution contains a double Kelvin wave if and only if I$ > I ,  but the explicit 
calculation of the amplitude of this wave again leads to intractable integrals. 

The solution for 
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